Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2013

Mathematics

MFP1

Unit Further Pure 1

Friday 17 May 2013 9.00 am to 10.30 am

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

	iner's Use
Examine	r's Initials
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Answer all questions.

Answer each question in the space provided for that question.

1 The equation

$$x^3 - x^2 + 4x - 900 = 0$$

has exactly one real root, α .

Taking $x_1 = 10$ as a first approximation to α , use the Newton-Raphson method to find a second approximation, x_2 , to α . Give your answer to four significant figures.

(3 marks)

QUESTION PART REFERENCE	Answer space for question 1
	

QUESTION PART REFERENCE	Answer space for question 1
•••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
••••••	
••••••	
• • • • • • • • • • • • • • • • • • • •	

2 The matrices A and B are defined by

$$\mathbf{A} = \begin{bmatrix} p & 2 \\ 4 & p \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}$$

- (a) Find, in terms of p, the matrices:
 - (i) $\mathbf{A} \mathbf{B}$; (1 mark)
 - (ii) AB. (2 marks)
- Show that there is a value of p for which $\mathbf{A} \mathbf{B} + \mathbf{A}\mathbf{B} = k\mathbf{I}$, where k is an integer and \mathbf{I} is the 2×2 identity matrix, and state the corresponding value of k. (4 marks)

QUESTION PART REFERENCE	Answer space for question 2

QUESTION PART REFERENCE	Answer space for question 2
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
••••••	
••••••	
••••••	

3 (a) Find the general solution, in degrees, of the equation

$$\cos(5x + 40^\circ) = \cos 65^\circ \tag{5 marks}$$

(b) Given that

$$\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

express $\sin \frac{\pi}{12}$ in the form $\left(\cos \frac{\pi}{4}\right) \left(\cos(a\pi) + \cos(b\pi)\right)$, where a and b are rational.

QUESTION PART REFERENCE	Answer space for question 3
•••••	
• • • • • • • • • • • • • • • • • • • •	

QUESTION PART REFERENCE	Answer space for question 3
••••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

- **4 (a)** It is given that z = x + yi, where x and y are real numbers.
 - (i) Write down, in terms of x and y, an expression for $(z-2i)^*$. (1 mark)
 - (ii) Solve the equation

$$(z-2i)^* = 4iz + 3$$

giving your answer in the form a + bi.

(5 marks)

(b) It is given that p + qi, where p and q are real numbers, is a root of the equation $z^2 + 10iz - 29 = 0$.

Without finding the values of p and q, state why p-qi is **not** a root of the equation $z^2+10iz-29=0$. (1 mark)

QUESTION PART REFERENCE	Answer space for question 4

QUESTION PART REFERENCE	Answer space for question 4
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	

5 (a	1)	A curve has equation $y = 2x^2 - 5x$.	
		The point P on the curve has coordinates $(1, -3)$.	
		The point Q on the curve has x -coordinate $1 + h$.	
	(i)	Show that the gradient of the line PQ is $2h - 1$.	(3 marks)
	(ii)	Explain how the result of part (a)(i) can be used to show that the tangent to at the point P is parallel to the line $x + y = 0$.	the curve (2 marks)
(b))	For the improper integral $\int_{1}^{\infty} x^{-4}(2x^2 - 5x) dx$, either show that the integral	al has a
		finite value and state its value, or explain why the integral does not have a value.	finite (3 marks)
QUESTION PART REFERENCE	An	swer space for question 5	
••••••			
••••••	•••••		•••••
	•••••		
•••••			
•••••			
• • • • • • • • • • • • • • • • • • • •			
••••••			

QUESTION PART REFERENCE	Answer space for question 5
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	

6 The equation

$$2x^2 + 3x - 6 = 0$$

has roots α and β .

- (a) Write down the value of $\alpha + \beta$ and the value of $\alpha\beta$. (2 marks)
- (b) Hence show that $\alpha^3 + \beta^3 = -\frac{135}{8}$. (3 marks)
- (c) Find a quadratic equation, with integer coefficients, whose roots are $\alpha + \frac{\alpha}{\beta^2}$ and $\beta + \frac{\beta}{\alpha^2}$.

QUESTION PART REFERENCE	Answer space for question 6

QUESTION PART REFERENCE	Answer space for question 6
•••••	

- Show that the equation $4x^3 x 540\,000 = 0$ has a root, α , in the interval $51 < \alpha < 52$.
 - **(b)** It is given that $S_n = \sum_{r=1}^{n} (2r 1)^2$.
 - (i) Use the formulae for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that $S_n = \frac{n}{3}(kn^2 1)$, where k is an integer to be found. (5 marks)
 - (ii) Hence show that $6S_n$ can be written as the product of three consecutive integers. (2 marks)
 - Find the smallest value of N for which the sum of the squares of the first N odd numbers is greater than $180\,000$. (2 marks)

QUESTION PART REFERENCE	Answer space for question 7

QUESTION PART REFERENCE	Answer space for question 7
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	

8 The diagram shows two triangles, T_1 and T_2 .

- (a) Find the matrix which represents the stretch that maps triangle T_1 onto triangle T_2 .

 (2 marks)
- (b) The triangle T_2 is reflected in the line $y = \sqrt{3}x$ to give a third triangle, T_3 . Find, using surd forms where appropriate:
 - (i) the matrix which represents the reflection that maps triangle T_2 onto triangle T_3 ; (2 marks)
 - (ii) the matrix which represents the combined transformation that maps triangle T_1 onto triangle T_3 . (2 marks)

QUESTION PART REFERENCE	Answer space for question 8
•••••	

QUESTION PART REFERENCE	Answer space for question 8
•••••	

9 A curve has equation

$$y = \frac{x^2 - 2x + 1}{x^2 - 2x - 3}$$

- (a) Find the equations of the three asymptotes of the curve. (3 marks)
- **(b) (i)** Show that if the line y = k intersects the curve then

$$(k-1)x^2 - 2(k-1)x - (3k+1) = 0 (1 mark)$$

(ii) Given that the equation $(k-1)x^2 - 2(k-1)x - (3k+1) = 0$ has real roots, show that

$$k^2 - k \geqslant 0 (3 marks)$$

(iii) Hence show that the curve has only one stationary point and find its coordinates.

(No credit will be given for solutions based on differentiation.) (4 marks)

(c) Sketch the curve and its asymptotes. (3 marks)

QUESTION PART REFERENCE	Answer space for question 9
•••••	

QUESTION PART REFERENCE	Answer space for question 9
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
••••••	
••••••	
•••••	
••••••	
••••••	
••••••	

QUESTION PART REFERENCE	Answer space for question 9
•••••	
•••••	
•••••	
	END OF QUESTIONS
Convrig	
Copyrig	ht © 2013 AQA and its licensors. All rights reserved.

